PROGRAMMING

This section contains information on
how to program various operating modes
for TAPS. It also provides information on
the layout of these programs so that a
knowledgeable user could modify
existing programs or write entirely new
programs for new operating modes.

The CPU used in the new TAPS is
faster and more capable than the previous
processor -- but it has less memory
available for program storage. In order to
maintain the functions of the older TAPS
systems in this new design, a different
approach was taken.

The program stored in the FLASH
EPROM on the CPU chip is now just a
driver program. It does not accomplish

any of TAPS functions itself. These
programs have been separated from the
orginal code and saved as complete
programs on the compact-flash RAM
card (CF-RAM). The driver program
knows how to read from the CF-RAM to
place these programs into the RAM.

When power is first applied to TAPS,
the driver program does basic
initialization and then waits for about 4
seconds for an input on the serial port. If
a keypress is detected, it then asks if the
user wants to change operating modes. If
the answer is Y (or y), a menu screen is
displayed and the user can choose which
operating mode is desired. The driver
program then loads this program from
CF-RAM and executes this program.

PRESS ANY KEY TO CHANGE MODES, K TO

CURRENT MODE IS 0 - CAST
DO YOU WANT TO CHANGE MODES (Y/N)?

MODES
CAST
EXTERNAL SOUNDER
INSTRUMENT
RAW CAST
TEST

= W N - o

ENTER NEW MODE CODE: 1

EXIT PROGRAMY

If no keypress is detected, the driver
program inspects the RAM to see if a
program is present. It does this by
calculating a byte checksum over a
specific part of RAM (containing
program instructions) and comparing this
value to a stored value in another part of
RAM. If these values agree, then this
code is executed.

Thus, if TAPS were previously
programmed with the desired mode, the
user need do nothing to have it begin
operating about 5-6 seconds after power
is applied.

Selecting a different operating mode
causes the driver program to load a RAM

image from the CF-RAM into working
RAM. This image includes the byte
checksum for the section of code and an
execution address. Once the code is
loaded, the execution address is retrieved
and executed.

Obviously, if you want to change
operating modes in TAPS you have to be
connected to the serial port with an
operating terminal program (HyperTerm
or equivalent) before you install the
shorting plug on TAPS. If you miss the 4
second window to type a key you will
have to pull the shorting plug, wait a
couple of seconds, and re-install it.

PROGRAMMING

OPERATING PARAMETERS

Each of the programs that produce the
operating modes of TAPS shares a data
structure which contains parameters such
as the number of pings per average, turn-
on depth, etc. Not all of the programs use
all of this data but all programs share this
data structure. This data structure is saved
to the EEPROM on the CPU chip
whenever it is modified. It is read into
RAM from the EEPROM whenever
power is applied.

Since different operating programs
use different subsets of this data structure,

changing to a new operating mode can
result in some strange selections of
parameters. Thus, when an operating
program is run for the first time, the
program will display the programming
screen appropriate for that mode to force
you to accept and/or change these
parameters.

For example, in the screen shown on
the previous page the user has elected to
shift from CAST to SOUNDER mode.
This will result in the following screen
from TAPS:

LOADING CODE INTO RAM ...
LOADING EXT SOUNDER MODE CODE

REPROGRAM OPERATING PARAMETERS:

ENTER NEW DATA OR <CR> TO ACCEPT CURRENT VALUE

PINGS/AVERAGE = 6 32
MAXIMUM RANGE = 19.000
DEPTH BINS = 150 200

NEW MAXIMUM RANGE = 25.250
OUTPUT MODE IS BINARY

ENTER 0 FOR BINARY / 1 FOR ASCII-HEX:

SELECT EXTERNAL SENSOR TYPE:
0 = NO SENSOR INSTALLED
1 FREQUENCY OUTPUT SENSOR

2 = VOLTAGE OUTPUT SENSOR
EXTERNAL SENSOR # 1 TYPE = 2 0
EXTERNAL SENSOR # 2 TYPE = 1 0

MAKE THESE CHANGES PERMANENT (Y/N)? Y

The first part of the screen is simply
informative, noting that the code is being
loaded. The remainder of the screen is the
programming screen for SOUNDER
MODE. In this mode, parameters like the
turn-on depth are not used and so are not
displayed. Generally, we use more pings
per average in SOUNDER MODE than
in CAST mode (since each range bin
consists of one sample per ping).
Parameters specific to this mode may be

left over from the last time this mode was
setup (e.g., # depth bins) or may be from
the previous mode (e.g., # pings/average).
In this example, we have changed the
number of pings per average, the number
of depth bins, and the instrument setups.

Typing <CR> (or ENTER) will keep
the displayed values. Entering a new value
will change that parameter. At the end,

PROGRAMMING

you will be given the opportunity to save
the entire data structure to EEPROM.

Note that if you don't save the data
structure, the next time power is applied
the old parameters will be read from
EEPROM and used for data collection.

MEMORY MAPS

The CPU used in TAPS is a Motorola
68HC12. This chip is an 8/16 bit

processor with a normal memory space of
64 kB. The lower 32 kB is devoted to

registers, an EEPROM, a small on-chip
RAM, and external RAM; TAPS uses a
non-volatile RAM chip with a real-time
clock. FLASH EPROM. The upper 32
kB is setup for flash RAM which
contains the FORTH O/S and the driver
program.

Data manuals and programming
information are included in the
Programming section of the TAPS CD.

A memory map for this processor is
shown below:

FROM TO SIZE CONTAINS

0000 OO0OFF System registers

0100 07FF Used by FORTH

0800 OBFF 1024 FREE RAM

0CoO0 OCFF do not use

0DO0O0 OFFF 768 EEPROM

1000 7FEF 28672 FREE RAM for programs/data
7FFO0 7FFF 16 RTC registers

8000 B7FF 14336 FLASH EPROM for programs
B80O F5FF 15872 kernel in flash (FORTH)
F600 F7EF 494 FLASH EPROM for programs
F7F0 F7FF Interrupt Vectors

F800 FFEF serial boot loader

FFFO FFFF main vectors

The driver program is loaded into
FLASH starting at $B800. Operating
programs are loaded into RAM starting at
$1000. In general, data and variable
storage is at low memory locations, with
code following.

External RAM is comprised of a
Non-Volatile RAM chip with a Real-time-
clock embedded. This RTC uses the
upper 16 bytes of memory for the data
registers, from $7FF0 to 7FFF.

External I/O is accomplished via
digital registers on the CPU chip. These
registers include those shown in the table
on the following page. Note that many
digital registers consist of a data register
for reading/writing data and a data
direction register that determines, bit-by-

bit, if a register is read or write. In some
cases, mixed used of a register (Port T is
an example) requires that the DDR be re-
set after each use.

Details of the ports used by TAPS
and the state of each port at initialization
is shown in the table following the port
listing.

The CPU is part of a single-board-
computer manufactured by New Micros,
Inc. of Dallas, TX. Their web site is
www.newmicros.com. The card part
number is NMIS/L-0912. Data on this
card and some information on the Forth
system embedded in Flash is provided in
the Programming section of the cd.

PROGRAMMING

68HC12 ports and registers.

ADRS REGISTER

0056 Port P

0057 Port P DDR

006F Port AD

00AE Port T

00AF Port T DDR

OO0FE Port DLC

OO0FF Port DLC DDR

00CO baud rate (16 bits)

00do SPI 1 control reg

00D1 SPI 2 control reg

00D2 SPI baud rate

00D3 SPI status reg

00D5 SPI data reg

00D6 Port S

00D7 Port S DDR

0080 Timer I/0O select

0084 Timer counter reg

0086 Timer control reg

008B Timer Control Reg 4
008D Timer interrupt mask 2
008E Timer interrupt flag reg 1
008F Timer interrupt flag reg 2
0090 Timer input compare reg 1

0091 Timer input compare reg 2

PROGRAMMING

68HC12 Port usage in TAPS

BIT PIN # /0 PRIMARY FUNCTON TAPS-NG 1/0 INIT
PTO 31 1/0 10 Capture FREQ 1 |

PT1 32 1/0 10 Capture FREQ 2 |

PT2 29 1/0 10 Capture MO - MUX 0 0
PT3 30 1/0 10 Capture M1 - MUX 0 0
PT4 27 1/0 10 Capture M2 - MUX 0 0
PT5 28 1/0 10 Capture GO - GAIN 0 0
PT6 25 1/0 10 Capture G1- GAIN 0 0
PT7 26 1/0 10 Capture G2 - GAIN 0 0
PSO 55 1/0 RxD RxD I

PS1 56 1/0 TxD TxD 0

PS2 53 1/0 0

PS3 54 1/0 0

PS4 51 1/0 MISO MISO I

PS5 52 1/0 MOSI MOSI 0

PS6 49 1/0 SCLK SCLK 0

PS7 50 1/0 \CS I

ADO 65 | AtoD 0 \BUSY - CF I

AD1 66 | AtoD 1 \BUSY - ADC2 |

AD2 63 I AtoD 2 \CFDET I

AD3 64 I AtoD 3 VERROR I

AD4 61 I AtoD 4 I

AD5 62 | AtoD 5 |

ADG 59 | AtoD 6 FREQ1 |

AD7 60 I AtoD 7 FREQ2 |

PPO 34 1/0 PWO/General 10 RUN/STOP 0 1
PP1 33 1/0 PW1/General 10 SHTDWN 0 1
PP2 36 1/0 PW2/General 10 \ADC?2 0 1
PP3 35 1/0 PW3/General 10 \ADC1 0 1
PP4 38 1/0 General 1/0 \DAC 0] 1
PP5 37 1/0 General 1/0 FREQ SELECT) 1
PP6 40 1/0 General 1/0 \DDS 0 1
PP7 39 1/0 General 1/0 \XGATE 0 1
PDLCO 41 1/0 DLCRx reserved I
PDLC1 44 1/0 DLCTx

PROGRAMMING

PDLC2 43 1/0 General 1/0 0
PDLC3 46 1/0 General 1/0 0]
PDLC4 45 1/0 General I/0 0
PDLC5S 48 1/0 General 1/0 TRANS PWR 0
PCLC6 47 1/0 General 1/0 INST PWR 0
PEO 1/0 \XIRQ I
PE1 1/0 \IRQ I
PE2 1/0 R/W 0
PE3 13 1/0 \LSTRB/TAGLO

PE4 1/0 E-CLOCK 0
PES 16 1/0 IPIPEO/MODA I
PE6 15 1/0 IPIPE1/MODB I
PE7 1/0 \DBE

In this table, an O denotes an output
and an I denotes an input. The values in
the right-hand column are zeros and ones,
logical values used to initalize the DDRs.

The tables above can be used in
conjunction with the CPU/IO schematics
to trace signals for troubleshooting
purposes. In this case, a logic 0 is a
voltage below 1 V while a logic 1 is a
voltage above 2.4 V. Test points are
provided to monitor most of these signals.

PROGRAM STRUCTURE

The operating programs are written in
Forth. The kernel of this operating
system/language is loaded into the Flash
RAM starting at $B800. Additional Forth
'words' are defined by the operating
programs using the basic vocabulary
included in the kernel. Forth can be
learned by anyone who is motivated to do
so. It is one of the more terse languages
available, using some standard characters
(such as . and ,) to stand for basic
operations (print and store, respectively).
It is quite economical of memory space,
however, and is quite fast in execution. In
previous versions of TAPS, Forth was
embedded in ROM on the CPU chip. In
this version, it is embedded in the Flash

EPROM on the CPU chip and can be
overloaded if desired.

In all of the operating programs used
in TAPS, variable storage begins at
address $1010. Generally speaking, the
space starting here is used for variables,
constants, and data arrays. Code begins
after all of the variable and constant
storage is defined. The space between the
start of external RAM ($1000) and
$1010 is used to hold data used by the
driver program.

The two bytes at $1000 hold the
execution address (code-field-address in
Forth) for the main word of the operating
program. Loading this address onto the
stack and EXECUTE-ing it will cause the
operating program to run.

The two bytes at $1002 hold a byte-
wise checksum for the program code
located between $3B00 and 4B00. This
checksum is computed when the program
is first loaded into the CF-RAM card. The
driver program computes this checksum
again each time TAPS is powered-up; if
the values match, it uses the execution
address to start the operating program. If
the values do not match, the driver

PROGRAMMING

program will display the MODE selection
menu.

The two bytes at $1004 hold a first-
run flag. This flag is set to True ($FFFF)
when the operating program is loaded
from CF-RAM. During the initalization
part of the operating program, this value is
tested and, when TRUE, the reprogram
code is executed. This is how the program
forces the user to verify and/or change the
operating parameters when a new mode is
installed.

COMPACT FLASH

The compact flash memory card
provides space for both operating
programs and data. Details of the
interfacing are provided in the
Programming section of the cd under
Programming Info.

Used as an extended memory device,
the compact flash card is composed of
512 byte sectors which must be read or
written as an entirety. Some insight into
the use of buffers to hold data prior to
writing to the compact flash may be
obtained by studying the code for CAST

On the 128 MB card, there are
262,144 sectors. Each sector may be
directly found from a long-word address.
TAPS uses sectors at address $1000 and
up for data. A long-word counter in NV-
RAM is used to hold the current sector
address and is updated each time a data
sector is written. Since there are 258,048
of these sectors available, no error
checking is done to see if the current data
address is greater than the end of the
memory. It is assumed that data will be
downloaded long before memory is full.

The operating programs are loaded
into compact flash at sector addresses
beginning at $100 (see the table, below).
Each program is a binary image of the
RAM space from $1000 to $7FFF.
These images are created by loading the
individual programs into RAM and then
loading and executing the
SAVEPRGM.4TH program. This
program requires entry of the compact
flash sector number at which to start
saving the code image and then execution
of the main word of this routine ; e.g.

200 SAVE-PROGRAM

and RAWCAST modes. would save the external sounder mode
code to compact flash.
MODE PROGRAM SECTOR
CAST WCAST.4TH 100
SNDR W/ TVG |SEXTSNDR.4TH 200
SNDR W/O TVG |[NOSNDR.4TH 300
INSTRUMENT INSTRUM.4TH 400
RAWCAST RAWCAST.4TH 500
TEST TAPSTEST.4TH 600
MAXI12FORTH.pdf located in the
PROGRAM OPERATION Programming Info section on the cd. This

Some insight into the operation of this
CPU can be obtained from the data
provided by New Micros in the paper

information will be summarized and
expanded here. Features peculiar to
TAPS will be explained in some detail.

PROGRAMMING

The CPU in TAPS follows a standard
Motorola startup procedure. The FORTH
kernel code pre-empts part of this startup
by checking for a quick-start sequence in
the EEPROM at address $OFFE. If the
byte sequence $AS55A is found at this
location, the word at EEPROM location
$OFFC is loaded as an execution address
and executed. One of the benefits of
having this quick-start code sequence
available is to write the write-once
registers on the CPU chip.

In TAPS, the code FFLASH.4th has
been loaded into EEPROM and the code
field address of this routine put at location
$OFFC. This routine sets the baud rate to
19200 baud, enables external RAM
access, and pauses a short time. When

this code is completed, execution returns
to FORTH.

Following this startup routine, the
kernel program searches memory at
specific locations for an autostart flag
word ($AS5A or $A44A). If either flag is
found, the next word is taken to be a code
field address and execution begins at that
address. If the flag word was $AS5A, this
code is executed repeatedly, should an
exit or error occur; if the flag word was
$A44A, then an exit from this code will
return operation to the FORTH kernel.

The end of the program DRIVER .4th
contains these words to be executed:

ad4d4a d00 ee!
' main cfa d02 ee!

These commands put the re-entry
autostart flag in EEPROM followed by
the code field address for the word
MAIN. Thus, after the quick start code
has executed, control will pass to the
driver program. Should the user specify
an exit, program control will pass to
FORTH again.

The driver program is fairly simple. It
displays the line

PRESS ANY KEY TO CHANGE MODES, K
TO EXIT PROGRAM

and waits for a user input. If any key
except K is pressed, then a new-program
dialog ensues and the user can pick from
the menu of programs which one to load.

After the program is loaded, or if no
keypress was detected, the driver program
computes a byte-wise checksum over the
address range $3B00-4B00 and
compares this to the value stored at
address $1002. If the values match, the
address located at $1000 is loaded and
execution resumes at that point.

If the user has entered a K, the driver
program ceases execution and control is
passed to the FORTH kernel. This option
is provided so that new programs can be
loaded into either the FLASH-EPROM
on the CPU chip or into the compact flash
memory.

LOADING PROGRAMS

There are two distinct methods for
loading code into TAPS: loading the
driver program into FLASH-EPROM and
loading operating code into RAM and
thence into the compact flash memory.
These methods differ because of the final
destination.

Normally, re-loading code does not
require that TAPS be opened. Should a
problem arise, it will be necessary to
open TAPS to get at certain jumpers. In
extremis, it may be necessary to use a
Background Debug Monitor (BDM) to
wrest control of the CPU. This latter
happens mostly when the correct
procedures are not followed.

A suitable terminal program will be
necessary to download code to TAPS.
New Micros offers a free terminal
program called NMITerm that runs on
PC's. We have used it to download
FORTH (operating) code. It is a bit tricky
to setup and may or may not work with S-

PROGRAMMING

files (see later). We keep an old DOS
machine alive strictly for the purpose of
running programs that allow us control of
properties that modern terminal programs
(like, ugh, HyperTerm) do not. We use
BitCom, which is probably no longer
available. There is a free program called
BitWare that claims to include BitCom as
a terminal program but we haven't tried it.
ProComm is a similar DOS-based
terminal program that would probably
work.

The essential controls are filtering (to
convert all typed or downloaded text to
upper case), character echo pacing (for
operating program downloads only), and
line pacing. The line pacing for operating
program downloads should be a specific
character (LF or $10) while the line
pacing for S-files or the driver program
should be timed (20-30 mSec).

To load a new version of an operating
program, follow these steps (which
assume you have a terminal program
properly configured to download code to
TAPS):

1. Power TAPS and press a K when the
startup dialog is seen. You should see a
response like:

MaxFORTH 5.0 >

2. Download the new code to TAPS. You
should use either the NMITerm program
or a suitable terminal program that allows
pacing with character echo and LF line
pacing.

3. When the code has completely loaded
(without errors), you can execute the code
to test it if you wish. This is how the
operating code was developed.

Otherwise, download the program
SAVEPRGM.4th. This code will load just
above the operating code previously
loaded. Then type the sector address for
this code (from the table on page 7) and
the word SAVE-PROGRAM. Hit

ENTER and the program will print out its
progress as it saves the code image to
compact flash memory starting at the
sector address you gave it.

4. Restart TAPS and press any key but
K. Answer Y to the load new code
question and load the new operating code.

Loading a new driver program is a bit
more complicated. If the following steps
are followed carefully, however, this
should be a simple process.

1. Power TAPS and press a K when the
startup dialog is seen. You should see a
response like:

MaxFORTH 5.0 >

2. Type the following exactly as shown:

HEX
FFFF D00 EE!
D00 10 DUMP

This should result in a line of hex
characters displaying the contents of 16
bytes beginning at the start of EEPROM.
It is very important that the autostart flag
at $D00 be over-written. If the first two
bytes at $D00-1 are not $FF FF then the
words above must be entered again. DO
NOT PROCEED until the data dump
shows the autostart flag has been over-
written.

3. Type the following:

FLASH

and change the baud rate on the terminal
program to 9600. Hit ENTER a time or
two until you see the line

ERASE (E) OR PROGRAM (P)?:

Type an E. After a short pause (while the
FLASH EPROM is erased), this line will
re-appear.

PROGRAMMING

4. Type a P. At this point, you need to
start downloading the Forth kernel
(F12V50L.S19). This is an S-file record
that must be downloaded using timed
pacing rather than the -character/line
pacing used to download programs. Set
the line pacing to about 20-30 mSec.

When the download begins, you will
see groups of asterisks appear on the
terminal screen. Wait until the previous
dialog line re-appears:

ERASE (E) OR PROGRAM (P)?:

5. Restart TAPS. Change the terminal
baud rate back to 19200. You should now
see the response

MaxFORTH 5.0 >
shortly after startup.

6. Download the program
DRIVER.4TH. Use the pacing from the
previous download. It will be
substantially slower than the operating
program downloads but the re-definition
of some standard FORTH words causes
error messages that would otherwise stop
the download.

7. Restart TAPS. You should now see the
driver program dialog upon startup.

WRESTING CONTROL

If the directions above are not
followed precisely, it is possible to lock
up the CPU and lose control. This
typically happens when the driver
program is changed but the autostart flag
is left in EEPROM. The hints here are
intended to help but, of course, the
solution depends upon the problem.

A Background Debug Monitor is a
useful device/program for fixing
problems related to autostart vectors and
such. We use a unit from Axiom
Manufacturing in Garland TX (AX-
BDM12) but almost any BDM setup for

the 68HC12 CPU will probably work.
There is a BDM connector on the CPU
card -- obviously, you will have to open
TAPS and remove the electronics unit to
get access to this connector.

When we are developing code -- with
the inevitable code lock-ups that entails --
we remove the CPU card from the
electronics cage and work with it alone on
the bench. We use a 12V DC supply to
provide board power (J1 pin 1 = +, pin 2
= ground). We have made an adaptor to
plug onto J6 that runs to a DB-9 serial
connector. Pin 1 is SI (serial data in) and
pin 2 is SO (serial data out). Pins 3-4 are
ground. SI, SO, and GND are the only
pins required for a simple serial interface
to a PC.

The file EEPROM.S19 in the Folder
DRIVER MISC CODE in the folder
FORTH CODE in the Programming
section of the CD can be used with a
BDM to download over the EEPROM at
address $0DO00 to kill any autostart
vectors if the procedures above do not
work. There is generally a reset control on
the BDM that lets the BDM program
interrupt the CPU and view and alter
memory contents.

Another possibility -- if you can exit
the driver program with a K but cannot
get to the FORTH prompt, try typing a
CTRL-G and then short the reset pin to
ground (on the BDM connector -- see the
NMIS schematic and the
BDMComm.pdf file to locate these
adjacent pins). The CTRL-G reset skips
the autostart sequence and may allow
recovery to FORTH. Clearly, this requires
TAPS to be open as well.

Sometimes it is possible to enter the
FLASH reprogramming code and then do
a CTRL-G reset escape (50-50 chance).
This requires installing a jumper on the
PDLC-0 pin and ground (just across
from this pin on the 72-pin connector on
the SBC itself). Set the terminal to 9600
baud. After the jumper is installed, do a

10

PROGRAMMING

reset (short the reset pin on the BDM
connector to ground) and you should see
the FLASH reprogramming line. Remove
the jumper from PDLC-0. Type CTRL-G
and short the reset pin again. You may
now see the FORTH prompt (and you
may need to change to 19200 baud to see
it).

Of course, if you plan to develop new
programs or even, perhaps, to practice
downloading programs, it might be wise
to do so with the spare CPU/IO card. In
this event, you will still have a working
TAPS while you are wrestling with the
joys of SBC programming!

MODIFYING PROGRAMS

The information in the sections above
is provided largely in case revised
programs are supplied by us to replace
existing programs. In that case, the
instructions for downloading the
programs should be sufficient.

In the event that a user wishes to
create a new operating mode -- e.g., save
raw data in SOUNDER mode -- then the
information on program structure and
CPU memory structure, along with the
examples from the existing programs,
may be of some benefit. Whenever
possible, of course, the existing programs
should be modified.

However, it is certainly possible to
reprogram the CPU to operate under a
completely different O/S, such as C, and
run programs in a completely different
fashion from those provided. We started
using FORTH simply because that was
the O/S bundled in ROM on the first
SBC's we used. Learning FORTH
seemed simpler than replacing the CPU
chip or designing our own CPU card.
This need not stop a determined user
from starting over from scratch with this
system.

One possible modification that the
user might wish to make is to change the

channel frequencies and/or gains. The
code segment show below is contained in
every operating program in the section
defining constants. It consists of three
parts: prefix codes, gain/mux/dds codes,
and frequencies for display purposes.

The DDS is loaded with two
frequencies at a time: the transmit
frequency (times 2) and the local
oscillator frequency (transmit frequency
plus 35 kHz). Each frequency consist of
4 bytes of data. Prefix codes are used to
send the frequency bytes to the DDS
chip. Each byte of frequency code
requires a corresponding byte of prefix to
direct it to the proper register.

In addition to the frequency codes, the
frequency table contains the MUX codes
to select the proper input to the receiver
and the proper transmitter channel, and
GAIN codes to set the final gain stage in
the receiver.

The layout of the frequency table is
explained in the header in the code
segment. The first two bytes are the
MUX and GAIN codes, followed by
eight bytes of frequency code. The
assembly code routine, send-fregs, is
included in each of the TAPS operating
programs to send the frequency codes to
the DDS. This routine sends a prefix
byte, a data byte, a prefix byte, etc. until
the prefix byte equals zero, signifying the
end of the table.

Changing gain codes or frequencies
requires computing new values for the
frequency table entries. The values
embedded in TAPS were computed using
the spreadsheet, TAPS-NG freq table.xls,
included on the cd in the Programming
section. This spreadsheet computes the
frequency codes for the DDS and
converts these values to hexadecimal for
entry in the code table. It also computes
the offsets for the MUX and GAIN
codes. Note that the second byte in the
frequency table is 00 for all channels.

11

PROGRAMMING

create prefix
3322 , 3120 , 3726 , 3524 , 0000 ,

(- frequency tables ----—————————————— -
5/09/05
layout is ttdd ffff ffff 1111 1111, where
tt is the mux/gain code
dd is a dummy byte [0]
ffff ffff is the code for 2*xmit freq
(1111 1111 is the code for the lo freq
hex
create fregs

—~ e~ o~~~

8000 , 02b6 , ae7d , 0189 , 374c , (265 khz fregs + 0

8400 , 044d , 013b , 0254 , 60aa , (420 khz fregs + 10
4800 , 072b , 020c , 03c3 , 6113 , (700 khz fregs + 20
6c00 , Ob43 , 9581 , 05cf , aace , (1100 khz fregs + 30
7000 , 12f1 , a9fc , 09a6 , b50b , (1850 khz fregs + 40
9400 , 1f21 , 2477 , Ofbe , 76c9 , (3040 khz fregs + 50

(companion table of xmit freqgs in khz

decimal

create khz

265 , 420 , 700 , 1100 , 1850 , 3040 ,
hex

decimal

Gains in the receiver can be set at 1, 2,
4,8, and 16 X. Adjusting these values will
change the receiving sensitivity by as
much as 24 dB. The original values were
selected to adjust the system gains to
resemble earlier TAPS systems gain
distributions across the frequencies.

