
TAPS-8 CODE

1

The TAPS-8 program is contained in an EPROM on the controller card.
This code may be changed to accommodate changes in data collection or to
correct errors by a more-or-less simple process, described in these notes.

Most of the TAPS-8 code is written in FORTH. A text file containing the
latest program is provided on this CD. FORTH is somewhat unique in two
respects.

First, the code, which consists of ASCII text characters, is compiled as it is
loaded. The process is akin to a threaded interpreter and eliminates the need for
separate compilers and linkers; the code can be loaded and run immediately. I
am going to assume that you know, or can learn, FORTH. There are books
available; I learned FORTH from a book and by writing and testing code.

Second, the program is composed of "words" that are defined in terms of
previously defined words. Each word comprises a sort of subroutine that can be
called, or executed, by subsequent words. The called word can itself consist of
calls to other, previously-defined words. The CPU chip itself contains the basic
FORTH dictionary or set of primitive commands. The only constraint on word
definition is that all words called have been previously defined. Note that this
hierarchy suggests that a FORTH program be read from the bottom up.

As an example, this is the MAIN word in the TAPS-8 operating program:

: main
 init (setup parms, SIO, etc.
 ram-map (check NVRAM for data
 read-bat disp-bat (display battery voltage
 startup (wait for 2 minutes for inputs
 runrun (ops code
;

The colon is FORTH for 'begin word definition'. The semicolon is FORTH for 'end
word definition'. "main" is the name of the word. In this case, all of the
succeeding words are previously-defined words. For example, "init" is the code
that performs CPU and controller card initialization, setting digital port values and
directions, setting up the serial interface, etc. An open paranthesis denotes
comments that are ignored during program load. The operating code for TAPS is
commented to describe the functions of each word and, sometimes, of each line
in the code.

Some words in the code are written in machine code. For example, the
code that causes the CPU to enter stop mode and cease operations (used when
the batteries have become depleted) is

hex
code-sub stop (enter CPU stop mode, clocks off
 07 c, (tpa
 847f , (and #$7f

TAPS-8 CODE

2

 06 c, (tap
 cf c, (stop
 39 c, (rts
end-code
decimal

In this case, "code-sub" is FORTH for "begin a machine code segment" and
"end-code" is FORTH for "end a machine code segment". The name of the word
is "stop". The FORTH command "," stores a 16-bit word into memory while "c,"
stores an 8-bit word. The command "hex" means to interpret numbers as
hexadecimal for conversion to binary. There is no assembler in this version of
FORTH so the assembly language, shown here in the comments, has been
assembled externally and the machine code equivalents stored in memory
directly.

Note that this code segment involves both direct commands and
interpreter instructions. "code-sub" tells the interpreter what is to come and how
to handle it but the rest of the instructions consist of commands that are executed
as they are read in. For instance, "07 c," causes the hex value $07 to be
converted to a binary word and the low byte of that word stored in memory at the
location of the code pointer.

Recall from the TAPS-8 Manual that the basic memory map of the 68HC11 is 64
Kb in size. The lower 32 Kb contains on-board registers and the RAM in U06.
The upper 32 Kb contains the operating program in EPROM (U07) and the Forth
code in ROM on the cpu chip. A complete memory map is shown below. All
addresses are in hexadecimal.

FROM TO CONTAINS
0000 0100 FORTH variables & stack
0101 01FF Text Input Buffer
0200 103B misc FORTH variables
103D 7EFF RAM
7FF8 7FFF RTC registers (in RAM)
8000 AFFF PROGRAM (EPROM) space
B000 B3FF Registers & Ports
B400 B5FF PROGRAM (EPROM) space
B600 B7FF EEPROM
B800 BFFF PROGRAM (EPROM) space
C000 C0FF External memory/latches
C100 DFFF PROGRAM (EPROM) space
E000 FFFF FORTH ROM

The current operating code for TAPS-8 is contained in the file
T8V201.4TH located in the folder CODE LISTINGS on the CD.

TAPS-8 CODE

3

PROGRAM LOGIC

A text version of the program flow is shown on the next page.

After initialization (see the word init), the program will wait up to two
minutes for some user input (startup). Normally, this time would be used to set
the operating parameters for the upcoming deployment (see the TAPS-8
Installation document on this CD; see command). If user input is received, the
input is processed (doit) and then the two minute timer is reset.

When this timer expires, the program enters a low-power sleep state (see
runrun). Current draw in this state is about 200 µA (if nothing is connected to the
host serial port). A timer on the external real-time-clock (RTC) causes interrupts
at 1 minute intervals. The CPU briefly wakes and checks the time on this clock to
determine if it is time to take data. If not, the CPU goes back to sleep.

When it is time to take data, the CPU powers up the acoustic system and
starts taking data. The value of the noisefile interval counter is decremented and
compared to zero; if this counter has reached zero, an INHIBIT flag is set and the
counter is reset to the starting value. If the INHIBIT line is set to the transmitter,
the next data set will consist of receiver noise files only. The acoustic system will
function just as in a real data set but no transmissions will occur.

Data are taken by the word get-data. The first data set is the small-volume
data set (get-smallv-data) taken at all eight frequencies. Pings are generated on
each channel in sequence and the echo data digitized and stored in working
memory (RAM). The CPU sends frequency codes from a stored table to the
direct digital synthesizer (DDS) to set the transmit frequency (times 4; set-freq)
and the local oscillator (LO) frequency. The digital gain stage in the receiver is
set from values stored in the gains array (set-if-gain). A flag is set to select the
shorter (336 µs) pulse length (set-pulse). A TVG voltage is produced by reading
a value from a stored TVG table and sending this value to a digital-to-analog
converter (DAC; set-tvg). The actual ping is generated by a machine-code
subroutine (tr).

Detected envelopes from the receiver are digitized by a 12-bit ADC on the
controller card. The raw data are moved from the input buffer to working buffers
in RAM (moveSVdata) until all data are collected.

The same process occurs for the large-volume data except that the pulse
length is changed to 762 mS. See get-largev-data and the routines called by it.

When data collection is done, the acoustic system is turned off and echo
processing begins. The raw data are processed into result accumulators. For the
small-volume data, there is one accumulator per frequency for echo intensities

TAPS-8 CODE

4

COLD START
Initialize parms from EEPROM
Check clock is running -- start it if it isn't

Compare external RTC to ram-clock and reset if needed
Wait two minutes for inputs

Service inputs if found; reset two minute timer
Go to sleep (and notify outside world)

NORMAL OPS
Timer pops and time = time for next data?
Read RTC in low-mem RAM and store data
Update external RTC
Power up the boards
Set the first frequency
Small-volume Sv loop:

Loop on NPINGS1
Loop on 8 FREQS

Set freq
Set post-IF gain
Point at proper TVG table start & set TVG
Call TR
Call MOVE-SV-DATA to move part of echo to RAM

END
END

Large-volume Sv loop:
Loop on NPINGS2

Loop on 4 FREQS
Set freq
Set post-IF gain
Point at proper TVG table start & set TVG
Call TR
Call MOVE-LV-DATA

END
END

Power off to boards
Process the small-volume Sv data

ΣI and ΣI2

Move to NVRAM
Process the large-volume Sv data

ΣA, ΣI, ΣI2 in range bins
Move to NVRAM

Go to sleep

Program Logic

TAPS-8 CODE

5

(squared-amplitudes) summed over 5 samples and the 16 pings. This is
accomplished by process-smallv-data and the routines called by it.

There are three accumulator sets for the large-volume data -- for echo
amplitudes, intensities, and squared-intensities. The raw data are stored in
working RAM like the small-volume data until all data have been collected. Only
four frequencies are used for this data set, consistent with the larger scatterers
targeted by this data set. The data are accumulated into 2 meter range bins as
well as by frequency, thus the amplitude accumulator for frequency 1 consists of
seven 2-byte values, the intensity accumulator consists of seven 4-byte values,
and the squared-intensity accumulator consists of seven 8-byte values.

Following data processing, the accumulators are moved en masse to the
non-volatile data RAM. Each data set fits in a 512 byte data block; each NVRAM
can hold up to 4096 data blocks. The data format is commented in the code as
well as in the Matlab processing programs previously supplied.

Data are moved to NVRAM by the word move-block. This routine takes
care of storing a byte in the NVRAM and incrementing the address in a 512 count
loop. The memory is broken down into 4096 of these blocks and a block counter
is kept in RAM (nvcntr1 - nvcntr4). The proper counter to check, and the number
of the NVRAM currently being used, is held in which-nvram. After the data block
is written, a zero is written to the starting byte of the next block (the reason will be
seen below).

As described in the TAPS-8 manual, access to the NVRAM data memory
chips (up to 4 may be installed) is though a memory-mapped letter-box
arrangement. The address in the NVRAM (21 bits or 3 bytes) must be set one
byte at a time by writing to memory addresses $C000 through C002 (high to low
bytes). A byte is written to (or read from) NVRAM1 by accessing $C003.
NVRAM2 is accessed by a read or write to $C004, etc. The process for reading
or writing a random byte is thus to write the address, one byte at a time, to
$C000-2. Then the byte is read or written to the appropriate address $C003-6.

In the code, routines have been written to set the memory pointers (set-
mem), increment the memory pointer by one (inc-ram), and clear the memory
pointers (zero the address; clear-mem).

After a deployment, the data in NVRAM can be dumped to the host
computer. This is done by the word dump-ram. This word checks the block
counter for each NVRAM (nvcntr1-4) and, if >0, outputs that many blocks of data
in ASCII-hex format. Each NVRAM is dumped separately with warnings to open
and close capture files as needed.

Clearing out the data memory is done by setting the counters to zero,
setting the address to zero, and writing a zero to the first byte of the first NVRAM.

TAPS-8 CODE

6

During initialization, the subroutine ram-map is called. This routine checks each
NVRAM for data. If the first byte is zero, the NVRAM is considered empty and all
higher-numbered NVRAMs are considered empty. If the first byte is non-zero, the
appropriate block counter is incremented and the address bumped by 512. This
continues until a zero byte is encountered or the counter reaches 4096, at which
point the next NVRAM is tested. Thus, clearing the first byte of the first NVRAM
clears all of memory so far as the code is concerned.

Of course, if you want for some reason to recover the data in NVRAM, so
long as no new data has been written (putting a zero byte in some other data
set), all one has to do is write a non-zero byte in the first data byte of the first
NVRAM. Then run ram-map again and the pointers and counters will be reset.

There once was an UN-ERASE command to accomplish these steps but
apparently it was removed at some point. The method to do this should be
obvious from this description, however.

TEST MODES

The code contains a number of test routines to allow hardware testing.
One accesses the test mode by typing CTRL-X. This brings up the test menu
from which one can select a particular test to conduct. Tests available include:

RETURN
TAKE A DATA SET
DUMP RAM DATA SPACE
TEST NVRAM / DESTRUCTIVE
ADC TEST
TURN BOARDS ON
SELECT CHANNEL
TRANSMIT TEST
RECEIVE TEST
TURN BOARDS OFF

One types the number of the desired test and it is executed.

One must be thoughtful in using these tests (they were developed for ME
to use in hardware test and are not particulary user-friendly). For example, to
transmit on a selected channel (one hopes the transducers are immersed when
one does this), you need to do a couple of things. TURN BOARDS ON will apply
power to all the cards. SELECT CHANNEL will let you setup the DDS with the
proper frequencies. TRANSMIT TEST will start TAPS pinging. A screen message
tells you to press any key to stop the test. At this point, you may want to TURN
BOARDS OFF or SELECT CHANNEL if you want to test another channel.

TAPS-8 CODE

7

RECEIVE TEST was designed to let one measure the receiver gain under
some standard conditions. For example, the TVG gain is set to an effective range
of 1 meter. You are asked for a receiver IF GAIN code (0 is a gain of 1X, 1 is a
gain of 2X, 2 is a gain of 4X, 3 is a gain of 8X, and 4 is a gain of 16X). You must
supply a source of acoustic input to the transducer (or electrical input to the
receiver itself) at the proper frequency and level. You must also manually open
the T/R switch by installing a jumper on the receiver card. Then the output must
be observed with an oscilloscope at the appropriate test point. Again, when
finished you should press any key, remove the hardware jumper, and, probably,
TURN BOARDS OFF or SELECT CHANNEL.

Any time you exit test mode, if you have turned the boards on, TURN
BOARDS OFF.

LOADING A PROGRAM

The TAPS-8 Operating Program was developed using the actual controller
card as a test bed. The EPROM is replaced with a 32Kb RAM chip and the
program loaded into the RAM and tested. When a working program is developed,
the code image from the RAM is extracted and an EPROM containing this code
is burned.

Remove the EPROM and insert a 32 Kb RAM chip. Note the two jumpers
above and below the EPROM chip. Each contains a 2-pin shorting plug that is
shorting the center pin to one end pin. Move each of these shorting plugs to short
the other end pin to the center (check the schematic, TAPS8 CPU, to see how
these shorting plugs should be arranged for EPROM and RAM usage). This will
enable the RAM chip for reading and writing.

It is generally prudent to disconnect the switched power to the external
cards while loading or testing a program, at least until the program is believed to
be working properly.

Connect a host computer to the serial port (9600, N-8-1) with a terminal
program running. Connect power to the TAPS and install the shorting plug (or, if
you are dealing with the controller card alone on the bench, apply 24VDC to the
power pins on the power jack and clip a jumper between the shorting plug pins).
You should see a line of text like

>MaxForth 3.5 ….

on the screen. Pressing <CR> should return a line like

>OK

This proves the 2-way connection between the host and the TAPS controller.

TAPS-8 CODE

8

Downloading a program requires paced line transfers -- something that
modern terminal programs no longer offer. We typically use BitCom, an old DOS
program, to download program files. On newer Windows systems, a program
available from New Micros Inc. called NMITerm can be used. This program is
somewhat slower but quite reliable. This program is found on the website
www.newmicros.com under the DOWNLOADS tab.

Whatever program is used, the goal is to send the ASCII text program file
to the TAPS controller card in such a way as to let the CPU interpret each line,
store the resultant machine code in memory, and respond with "OK<CR><LF>".
In BitCom, we use the <LF> character to tell us that it's ok to send the next line. I
presume MNITerm works much the same way. On the screen of either terminal
program, you will see the code scroll down with each line ending with "OK".
Errors will be signaled with a "?" character along with some semi-cryptic error
message. In MAXTerm, downloading will stop and you will be given the
opportunity to continue downloading or to stop and correct the error. In BitCom,
you will need to stop downloading manually by pressing a function key.

One small note: The FORTH embedded in the CPU expects the input data
to be in upper case. I find this very annoying when I write code, so I have set a
converter in BitCom to always turn lower case letters into upper case during
downloads and keyboard entry. This feature is not available in MAXTerm so,
when I'm forced to use it, I use the editing features of a text processor to highlight
and then change case on the entire file before I download it. Remember to set
the shift lock when you type words or commands directly into the CPU.

When the program has completely loaded, the CPU will do … nothing. It is
waiting for more commands to be entered via the serial port. Some commands
that you might use include "WORDS". (Remember about the upper case!) This
will produce a (rather large) display of every FORTH word that exists in the
FORTH dictionary and the address in memory where that word is stored. This
listing contains the primitive FORTH vocabulary as well as the words you have
defined. I often turn capture on just before I type WORDS and save this listing for
later use.

Keep the memory map in mind if you make major changes to the program.
At various spots in the TAPS-8 operating program you will find code like this:

create skip2 ($C000-C1FF are memory-mapped I/O
hex
c200 here -
allot
decimal

TAPS-8 CODE

9

This code was inserted to skip over the section of memory that was re-mapped to
form an external I/O port. The proper place to put it was found by trial and error --
when the code attempts to load in a region that is re-mapped, the load will cause
an error. One then backs up, inserts some code like this example to skip over
this section, and loads again.

TESTING THE PROGRAM

One nice feature of FORTH is that each defined word stands alone. This
means that each word can be tested individually as it is written, if desired.

How does one run a word, you might ask. One types it's name and hits
<CR>! For example, here is a word from the RTC routines in the TAPS-8
operating code:

: get-time2
 read ctrl-reg c! (halt updates to clock registers
 year-reg c@ year-mask and
 bcd2int year2 c!
 month-reg c@ month-mask and
 bcd2int month2 c!
 day-reg c@ day-mask and
 bcd2int day2 c!
 hour-reg c@ hour-mask and
 bcd2int hour2 c!
 min-reg c@ min-mask and
 bcd2int minute2 c!
 sec-reg c@ sec-mask and
 bcd2int second2 c!
 0 ctrl-reg c!
;

This code stops the RTC briefly by storing a code byte (READ) in a control
register (CTRL-REG) and then reading out year, month, day, hour, minute, and
second data from the appropriate registers in the RTC. These bytes are stored in
variable locations named YEAR2, MONTH2, etc. Then the RTC is restarted by
storing a zero in the control register. If you type

GET-TIME2

and <CR>, this word will be executed (it might be wise to execute INIT first to set
up ports and such). In this case, the RTC in the NVRAM chip will be read and the
results stored in RAM somewhere. If you want to see what the data look like, you
could type

YEAR2 C@ .

and <CR>. This fetches (C@) the byte value from the variable location YEAR2
and prints it (. is the FORTH print command) to the screen. After you are done,
this line might look like

TAPS-8 CODE

10

YEAR2 C@ . 6 OK

where the year is 6 (2006). Similarly, you can inspect the contents of the month,
day, hour, minute, and second variables by fetching and printing them to the
screen.

Other code may require inspection by watching level changes on a digital
line (such as transmit pulses or digital gain settings) or measuring something like
the voltage level from the DAC or the frequency output of the DDS. It is assumed
that some study of the code and the controller schematic will be sufficient to gain
familiarity with the functions of both the code and the hardware.

BURNING AN EPROM

The ultimate goal of any program change is to produce a working code
image that can be burned into an EPROM. A program that will automatically run
when power is applied. This involves two steps: copying the code image and
installing a special byte sequence at a special location.

The operating code for TAPS-8 includes the following statement near the
beginning of the program:

8004 dp !

This statement causes the dictionary pointer (DP) to be set to the hex value,
$8004. The EPROM space begins at $8000 so this command forces code to start
loading 4 bytes beyond the beginning of this space. The program code ends with
the statements

hex

a55a 8000 ! (set auto-run flag in EPROM
' main cfa 8002 !

decimal

The first part of this code places the byte sequence $A55A at address $8000.
The next part places the address (code field address or cfa) of the word MAIN at
$8002. The FORTH code in the CPU looks at special addresses for special code
words -- when it finds $A55A at $8000, it reads the next word as an address and
resumes execution at that address. Thus, on power-up, our code will begin
executing.

It is usual to comment out the last code snippet when testing new code so
that execution is solely at the control of the programmer. When the program is

TAPS-8 CODE

11

tested and ready to move to EPROM, a final load is done with this code active.
This will produce a code image that is 'ready to run'. Note that the last lines of the
operating code output an address (HERE). You will need to note this address as
it is the end of the code image in RAM.

Note from the memory map that the lower memory ($0000-7FFF) is used
to hold variables and data. This means we could use some of it to hold a
program to download the code image if we wished. A program,
HEXDUMP2.4TH, has been provided to do this semi-automatically.

Without disturbing the program just loaded into the RAM chip in high
memory, load the program HEXDUMP2.4TH. This program will load into low
memory at $1000. Then type

8000 xxxx HEX_DUMP

where xxxx is the value of HERE you noted above. DO NOT HIT <CR> YET!

Now enable a capture file to save the program code image to disk. This
output will be an ASCII text file of data in Motorola S-Format. When the capture
file is enabled, press <CR> and lines of text will begin to scroll down the screen.
When the last line is output, close the capture file.

The file will contain lines that look like the following:

:20802000FFFEFEAC8004FE22FD4E8004FA7DFEB6FE800200FE800201FE800202FE800203F0
:20804000FE800204FE800206FE800208FE80020AFE80020CFE80020EFE80020FFE800211F4
:20806000FE800213FE800215FE800217FE800219FE80021BFE80021FFE800221FE800225F4
:20808000FE800229FE80022BFE80022DFE80022FFE800231FE800233FE800235FE800237F3
:2080A000FE800239FE80023BFE80023DFE80023DFE80023FFE800241FE800245FE800249F2
:2080C000FE80024BFE80024DFE80024FFE800251FE800257FE800259FE80025BFE80025DF1
:2080E000FE80025FFE800261FE800262FE800263FE800264FE800265FE800266FE800267F1
:20810000FE800268FE80026AFE80026CFE800270FE800272FE800278FE80027AFE800280F1
:20812000FE800284FE800286FE800288FE80028AFE80028CFE80028EFE800290FE800292F0

The format of each line is a colon, the number of bytes ($20 or 32), the load
address ($8020 for the first line), the data bytes, and a 4-byte checksum. Now
comes a tricky part. Note that the first line of this sample code came from
address $8020. We actually want to load it in address $0020 for our EPROM
since it's addresses start at zero (mapping it to $8000 is done by the CPU and
glue logic, not the EPROM itself!). Somehow, we have to change all of the :208x
addresses to :200x addresses. Hurrah for search and replace!

In the primitive text editor we usually use, there is a command to replace
all instances of :208 with :200 automatically. WORD and similar word processors
can do this as well. Of course, then you need to replace all the :209's with :201,
the :20A's with :202, etc. Until you come to the end of this hex code listing. There
you will find two different lines that might look like:

TAPS-8 CODE

12

:1BC10000FEAC94A08128FE22FC24FD05000A9D7DBF54FD170004BF39FEB604F4
:00000001FF

The last line is an end-of-record mark and should be left alone. The next-to-last
line is the one that we need to inspect and (carefully) change. Note that the load
address for this line is $C100. We need to change the C to 4 (remember, 8->0, 9-
>1, A->2, B->3, C->4, …).

Finally, edit the file to remove any stray blank lines and whatever trash
accumulated at the end of the file. Save this file as FILENAME.HEX (you pick
the FILENAME, of course). This file is now readable by most EPROM burner
programs and will properly align the data beginning at the start of the EPROM.

Burn the EPROM (32Kb) and install in place of the RAM chip used to load
the program and test it. Remember to swap the jumpers back to their original
locations. Apply power and you should see the program start operation as
programmed.

Nothing can possibly go wrong at this

!

